Some Problems in Additive Number Theory
نویسنده
چکیده
(3) f(x) = (log x/log 2) + 0(1)? 1\Mloser and I asked : Is it true that f(2 11) >_ k+2 for sufficiently large k? Conway and Guy showed that the answer is affirmative (unpublished) . P. Erdös, Problems and results in additive number theory, Colloque, Théorie des Nombres, Bruxelles 1955, p . 137 . 2. Let 1 < a 1< . . . < ak <_ x be a sequence of integers so that all the sums ai,+ . . .+ais, i 1 <i 2 < . . . =< is, 1 < s <r are distinct . Put max k=gr (x) . Turán and I proved
منابع مشابه
Combinatorial Nullstellensatz
We present a general algebraic technique and discuss some of its numerous applications in Combinatorial Number Theory, in Graph Theory and in Combinatorics. These applications include results in additive number theory and in the study of graph coloring problems. Many of these are known results, to which we present unified proofs, and some results are new.
متن کاملGroups in Combinatorial Number Theory
In combinatorial number theory, there are many topics related to group structure. Even for abelian or cyclic groups, there are some very challenging unsolved conjectures. In this talk we give a survey of problems, results and methods in several fields of combinatorial number theory. The topics include sumsets in additive combinatorics, Snevily’s conjecture and Latin transversals, covers of the ...
متن کاملAdditive Bases and Extremal Problems in Groups, Graphs and Networks
Bases in sets and groups and their extremal problems have been studied in additive number theory such as the postage stamp problem. On the other hand, Cayley graphs based on specific finite groups have been studied in algebraic graph theory and applied to construct efficient communication networks such as circulant networks with minimum diameter (or transmission delay). In this paper we establi...
متن کاملMathematics 6180, Spring 2017 Some Motivational Problems in Number Theory
Number theory may be loosely defined as the study of the integers: in particular, the interaction between their additive and multiplicative structures. However, modern number theory is often described as the study of such objects as algebraic number fields and elliptic curves, which we have invented in order to answer elementary questions about the integers. Therefore, an argument can be made t...
متن کاملSome problems in analytic number theory for polynomials over a finite field
The lecture explores several problems of analytic number theory in the context of function fields over a finite field, where they can be approached by methods different than those of traditional analytic number theory. The resulting theorems can be used to check existing conjectures over the integers, and to generate new ones. Among the problems discussed are: Counting primes in short intervals...
متن کاملAdditive Combinatorics and its Applications in Theoretical Computer Science
Additive combinatorics (or perhaps more accurately, arithmetic combinatorics) is a branch of mathematics which lies at the intersection of combinatorics, number theory, Fourier analysis and ergodic theory. It studies approximate notions of various algebraic structures, such as vector spaces or fields. In recent years, several connections between additive combinatorics and theoretical computer s...
متن کامل